
electronic reprint

ISSN: 1600-5767

journals.iucr.org/j

A new algorithm for the reconstruction of protein molecular
envelopes from X-ray solution scattering data

John Badger

J. Appl. Cryst. (2019). 52, 937–944

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this article may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

J. Appl. Cryst. (2019). 52, 937–944 John Badger · Reconstruction of protein molecular envelopes

http://journals.iucr.org/j/
https://doi.org/10.1107/S1600576719009774
http://journals.iucr.org/services/authorrights.html
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576719009774&domain=pdf&date_stamp=2019-08-14


research papers

J. Appl. Cryst. (2019). 52, 937–944 https://doi.org/10.1107/S1600576719009774 937

Received 22 April 2019

Accepted 8 July 2019

Edited by D. I. Svergun, European Molecular

Biology Laboratory, Hamburg, Germany

Keywords: X-ray solution scattering; protein

shape determination; molecular envelopes.

A new algorithm for the reconstruction of protein
molecular envelopes from X-ray solution scattering
data

John Badger*

DeltaG Technologies, 4360 Benhurst Avenue, San Diego, CA 92122, USA. *Correspondence e-mail:

info1.dgtech@gmail.com

At sufficiently low resolution, the scattering density within the volume occupied

by a well folded protein molecule appears relatively flat. By enforcing this

condition, three-dimensional protein molecular envelopes may be reconstructed

using information obtained from X-ray solution scattering profiles. A practical

approach for solving the low-resolution structures of protein molecules from

solution scattering data involves modelling the protein shape using a set of

volume-filling points (‘beads’) and transforming the scattering data to a more

convenient target, the pair distance distribution function, P(r). Using algorithms

described here, the beads interact via a modified Lennard–Jones potential and

their positions are adjusted and confined until they fit the expected protein

volume and agreement with P(r) is obtained. This methodology allows the

protein volume to be modelled by an arbitrary, user-defined number of beads,

enabling the rapid reconstruction of protein structures of widely varying sizes.

Tests carried out with a variety of synthetic and experimental data sets show that

this approach gives efficient and reliable determinations of protein molecular

envelopes.

1. Introduction

Over the last two decades X-ray solution scattering has

become a mainstream research method employed by many

research groups to obtain structural information on protein

molecules. With data modelling and analysis techniques now

available it is often possible to obtain far more information

from X-ray solution scattering experiments than basic struc-

tural parameters such as radii of gyration, mass and volume

[for modern approaches to the determination of these para-

meters, see Rambo & Tainer (2013)]. Despite the one-

dimensional nature of the X-ray scattering data, unique three-

dimensional molecular envelopes with arbitrary shapes may

be recovered using ab initio reconstruction techniques

(Chacón et al., 1998; Svergun, 1999; Walther et al., 2000;

Svergun et al., 2001).

The key observation that underpins computational meth-

odologies for the reconstruction of protein envelopes from

solution scattering data is that, at sufficiently low resolution

(up to �25 Å), the protein density within the molecular

envelope is relatively flat. Scattering effects arising from

inhomogeneities in the atom number density due to secondary

structural elements only start to become significant at higher

resolutions [a cogent discussion of these resolution regimes is

given by Svergun et al. (2001)]. Algorithms for determining

protein molecular envelopes typically represent the protein

volume with a set of points (‘beads’), the positions of which

are adjusted to fit either the scattered intensity distribution or

the pair distance distribution, P(r), obtained from a transform
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of the data (Svergun, 1992). Physically plausible solutions are

obtained when the volume-defining beads are required to

cluster into contiguous volumes with relatively uniform

packing density. Since the number of beads used in these

models is typically relatively large, and no convenient analy-

tical optimization technique is available, structure solutions

are obtained using Monte Carlo or other methods (genetic

algorithms) that employ random searches. A recently devel-

oped alternative approach adapts the iterative image recon-

struction method to the determination of electron densities

representing the protein volume (Grant, 2018).

One tactic for rapid and practical calculations is to deploy

the beads on a uniform grid and optimize a scoring function

that encourages clustering of occupied grid points (Chacón et

al., 1998; Svergun, 1999; Walther et al., 2000). A disadvantage

of this approach is that, because of the regularity of the grid

and the binary nature of the solutions (grid points are either

occupied or not), the representation of deviation from an

almost completely uniform scattering density is curtailed and

only intensity data in the lowest resolution regime (q <

�0.2 Å�1) are adequately fitted. A strategy for using grid-

based programs is to truncate the intensity data at a resolution

limit where the model is unable to express non-uniformities in

the protein scattering density. If possible, incorporation of

data to somewhat higher resolution, where scattering effects

resulting from the overall shape of the protein still dominate

but become modulated by density inhomogeneities due to

secondary structural elements, should lead to more accurate

and better-defined structure solutions. In the absence of a grid

representation, restraints between arbitrarily placed beads are

needed, which will cause them to cluster together with a

relatively uniform packing density. Since the number of beads

is large compared with the information content in the scat-

tering data, overly loose restraints will cause an under-deter-

mined optimization problem while very rigid restraints will

result in inadequate modelling of the higher-resolution

portion of the data. An ingenious basis for establishing an

appropriate set of inter-bead restraints is to consider the beads

to be ‘dummy amino acids’ and employ interaction terms that

cause them to connect in chains and cluster to mimic C�-to-C�
distributions observed in experimentally determined protein

structures (Svergun et al., 2001).

In this paper, an algorithm that uses a modified Lennard–

Jones potential as an energy term between the beads that

represent the protein volume is described. Essentially, the

beads act as ‘sticky hard spheres’ which, when optimally

packed, fill the anticipated protein volume. Tests using syn-

thetic and experimentally derived P(r) functions as input data

show that a computer program that incorporates this approach

is fast enough for routine use on both small and large proteins

and gives consistent and accurate structure solutions.

2. Methods

2.1. Target function

The operation of the new program, SHAPES, is based on

the idea that the pair distance distribution function P(r),

derived from solution scattering data, may be fitted by a

histogram H(r) of distances between a set of beads. Upon

convergence of the optimization process, the beads should be

arranged with relatively uniform density within the expected

volume of the target protein. The beads are driven to cluster

with uniform density by an inter-bead interaction energy V(r)

that depends on the distance r between them, and the

complete target function for structure determination is

Score ¼ P½PðrÞ �HðrÞ�2=N� �1=2þkVðrÞ; ð1Þ

where the summation extends over the N data points in the

input P(r) that are greater than the ideal model bead–bead

separation, r0. The scale factor k is set so that shifts in the

agreement between P(r) and H(r) and the changes in the inter-

particle interaction energy V(r) remain almost equal as the

bead positions change during the structure determination

process. This choice of weight ensures that the bead positions

are adjusted to fit P(r) and minimize the inter-bead energy

throughout the optimization process. In tests, equal weighting

of these two terms gave slightly better results than more

asymmetric choices. Other than the scale factor k, no addi-

tional weighting scheme was used.

Since the final congealed mass of beads at the conclusion of

the optimization is required to occupy the target protein

volume, the inter-bead interaction term should become suffi-

ciently repulsive at distances much shorter than r0 to prevent

compression of the volume. Conversely, attractive interactions

between beads separated by more than a few r0 should

approach zero to avoid biasing the final structure to spherical

shapes. These considerations are taken into account in the

algorithm by having the set of beads interact via a Lennard–

Jones 6–12 potential where the region around the minimum is

truncated to a flat-bottomed basin:

VðrÞ ¼ Max ðr0=rÞ12 � 2ðr0=rÞ6;�0:291
� �

: ð2Þ

For Lennard–Jones potentials the repulsive force increases

very steeply for beads closer to each other than the optimal

contact distance r0, and the attractive region decays to almost

zero for beads separated by distances greater than �3r0. The

optimal contact distance is set to the value for a close-packed

array of beads filling the partial specific volume of the target

protein. Truncating the Lennard–Jones energy minima (�1

energy unit) to a flat-bottomed basin (�0.291 energy units)

allows some freedom in the local bead density at no cost in

inter-bead energy. For the case where the number of beads is

set to be equal to the number of amino acids in the structure,

the target bead–bead separation is r0 = 5.6 Å and the basin

extends the lowest energy region to larger r by �2 Å and

slightly inwards into the steeply repulsive region. Interactions

between beads that are separated by distances greater than 3r0

are neglected. The numerical parameters used in a program

run are automatically set depending on the number of beads

chosen to model the protein volume.
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2.2. Optimization procedure

The shape reconstruction process is initiated from a

collection of beads occupying a space that is about 15% larger

than twice the expected partial specific volume of the target

protein. Protein partial specific volumes are estimated from

the number of amino acids entered into the program,

assuming 110 Da per amino acid and using 1.21 as a conver-

sion factor between molecular weight and partial specific

volume. A relatively smooth distribution of starting positions

is obtained by first randomly placing beads within an

approximately spherical volume with maximum bead separa-

tion, Dmax, equal to the maximum separation specified by the

input P(r). To prevent the elimination of highly unfavourable

short contacts (r < r0) between beads from dominating the

start of the optimization process, the bead positions are

adjusted by applying small shifts that eliminate overly close

contacts. For disk- or rod-shaped protein assemblies that

contain high rotational symmetries, the reconstruction process

may sometimes become trapped by a misalignment of the

symmetry axis with the correct shape. These unwanted solu-

tions may be avoided by initiating the reconstruction process

from slightly flattened or extended bead distributions. In

practice, the overall shape of symmetric assemblies may be

known from structural data a priori, detected from recon-

struction trials in the absence of the symmetry restraint or

inferred from unphysically disconnected regions in the incor-

rect structure solutions.

The optimization of bead positions is driven by a Monte

Carlo process in which a random shift may move a bead to any

position within an allowed protein volume. Changes in bead

positions are accepted according to standard criteria for these

types of optimization problem; if repositioning a bead

improves the score for the system or raises the score by an

increment that is less than a value drawn from a random

Boltzmann distribution then the move is accepted. Parameters

are adjusted so that at least 10% of trial moves are accepted

throughout the Monte Carlo process. In this way, the beads

remain ‘on the boil’ and premature convergence is prevented.

Since most of the allowed volume is occluded by beads and the

Lennard–Jones potential is highly unfavourable for bead

separations much closer than r0, the acceptance rate is

necessarily quite small.

A key driver for convergence of the optimization process is

a progressive restriction in the bead-occupied volume from

�2.30� the target partial specific volume to �1.15� the target

partial specific volume. This concept is analogous to the

‘shrink wrap’ approach (Marchesini et al., 2003) commonly

used to reconstruct real-space objects from Fourier transform

data by iterative methods. The allowed volume is defined by a

grid on which local bead densities are calculated in spheres with

radii �1.8r0, and a density threshold is determined so as to give

the appropriate number of grid points for the required volume.

Beads may only move to positions that are in proximity to the

allowed grid but they are not confined to the grid points. The

program is currently set for 140 volume contraction cycles with-

in which each cycle includes ten trial moves per bead. A final

set of 20 optimization cycles are run at a fixed final volume.

2.3. Program operation

The required inputs for program operation are (i) the pair

distance distribution function P(r), (ii) the expected number

of amino acids in the structure and (iii) the number of beads

that will be used to represent the protein volume. For most

reconstruction problems it is appropriate to set the number of

beads to be approximately equal to the number of amino acids

in the protein; however, the reconstruction algorithm is not

specifically parameterized for this equivalence. More robust

convergence might sometimes be obtained for small proteins

(<300 amino acids) by using a larger number of beads, and for

large proteins (>1000 amino acids), computer time may be

reduced by modelling the shape with a smaller number of

beads than amino acids. If a point rotational symmetry is

anticipated (i.e. for oligomeric structures), the symmetry may

be applied and calculation times are reduced by the elimina-

tion of redundant operations. For convenience, the program

may be set to perform multiple reconstruction runs.

The key outputs from the program are pseudo-PDB-format

files that contain (i) the final distribution of beads and (ii) a

space-filling array represented by positions on a 5 Å rectan-

gular grid that fills the protein partial specific volume. The

space-filling array is generated from the final local average

density of beads in the same way as the determination of the

allowed volume during the optimization process.

2.4. Analysis software and hardware

Programs from the ATSAS 2.7.2 program suite (Franke et

al., 2017) were used for calculations related to the analysis of

solution scattering data. Specifically, CRYSOL 2.8.3 (Svergun

et al., 1995) was used to generate scattering data from atomic

models and GNOM 4.6 (Svergun, 1992) was used to calculate

pair distance distributions from intensity profiles. In order to

compare the reconstructions obtained with SHAPES with

reconstructions obtained with other widely used software,

reconstruction trials were also performed with GASBOR 2.2

(real-space version; Svergun et al., 2001), DAMMIN 5.3

(Svergun, 1999) and DAMMIF (Franke & Svergun, 2009).

Overlays and numerical comparisons of sets of beads,

molecular envelopes and atomic models were made using the

SUPCOMB program as incorporated into DAMSEL 5.0

(Kozin & Svergun, 2001). In brief, the SUPCOMB algorithm

finds the optimal alignment of two sets of points as scored by

the normalized spatial discrepancy (NSD). This measure

combines the mean of the minimum distance from each point

in set 1 to points in set 2 and, the reciprocal measure, the mean

of the minimum distance from each point in set 2 to points in

set 1. The two scores are normalized by the mean minimum

separations of points within the sets and are added together.

Using the NSD it is possible to compare structures defined by

different numbers of points and at different resolutions (i.e. a

low-resolution molecular envelope described by relatively few

points can be compared with an atomic model). NSD scores

less than unity represent objects that are similar to each other

and, conversely, NSD scores much greater than unity indicate

dissimilar objects.
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Atomic models and outputs from reconstruction trials were

visualized using the MIFit molecular graphics program (http://

code.google.com/p/mifit).

The SHAPES program was initially developed using the

Python programming language (version 2.6.5) and subse-

quently adapted for compatibility with the Python 3 standard.

The program does not utilize any non-standard modules. All

calculations reported here were performed on a Dell Inspiron

3542 laptop computer running an i5 1.70 GHz processor on

the Windows 7 operating system.

2.5. Test data

The performance of the SHAPES program was evaluated

using both simulated intensities calculated from atomic

models obtained from the Protein Data Bank (PDB; Berman

et al., 2000) and publicly available experimental data from the

Small Angle Scattering Biological Data Bank (SASBDB;

Valentini et al., 2015).

Simulated data sets were calculated using the default

settings of the program CRYSOL from a variety of protein

structures obtained from the PDB, i.e. the resulting intensities

in these synthetic data sets include a contribution from

modelling a surface solvent layer and are not just the result of

in vacuo scattering from model protein atoms. Pair distance

distribution functions were calculated from these intensities

using the program GNOM. Test cases with simulated data

were selected to include a variety of protein sizes, shapes and

symmetries. Examples shown here are the inactive form of the

c-Abl tyrosine kinase (PDB code 2fo0; Nagar et al., 2006), an

oligomeric form of ArnA (PDB entry 4wkg; Fischer et al.,

2015), a single disc of the chaperonin GroEL (PDB entry 1ssb;

deMel et al., 1994), a complex of KRAS4b with PDE delta

(PDB entry 5tar; Dharmaiah et al., 2016), lysozyme (PDB

entry 253l; Shoichet et al., 1995) and c-Src in an open

conformation (PDB entry 1y57; Cowan-Jacob et al., 2005)

(Table 1).

The examples taken from the SASBDB were the first five

data sets that appeared in the search interface on 8 November

2018 for which both a solution scattering reconstruction and

an associated model were reported. The accompanying P(r)

files were taken from the SASBDB and used as input for the

reconstruction program. These test cases include Kif2A-

bound tandem tubulin heterodimers (SASDCR9; Trofimova et

al., 2018), fluorescence recovery protein dimer (SASDD42;

Slonimskiy et al., 2018), phox homologue C2 domains of

human phosphatidylinositol 4-phosphate 3-kinase C2 domain

containing subunit alpha monomer (SASDD76; Chen et al.,

2018), VNG0258H/RosR dimer (SASDD89; Kutnowski et al.,

2018) and the 2:1 complex of a fluorescence recovery protein

dimer with orange carotenoid-binding protein monomer

(SASDDG9; Sluchanko et al., 2018). The amino acid counts

used by the program were calculated from the quoted mol-

ecular weights, assuming 110 Da per amino acid.

3. Results and discussion

3.1. Reconstructions of protein molecular volumes using
SHAPES

The proof of concept and limitations of these algorithms

were first explored using simulated data calculated from

protein coordinate sets obtained from the PDB. The examples

cover a variety of protein sizes, shapes and symmetries

(Table 1). To quantify the reproducibility of the structure

solutions obtained with SHAPES, ten replicate runs were

performed for each example. Pairwise superpositions of the

space-filling arrays obtained for each set of replicates gave

mean NSD values of �0.6, i.e. the replicate reconstructed

volumes have very similar shapes on the length scale of the

research papers
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Table 1
Synthetic data sets and parameters for protein reconstruction tests.

The total number of amino acids and the rotational symmetry are given for
each PDB entry used to generate data. The data over range q were calculated
using CRYSOL and the pair distance distribution function extending to Dmax

was calculated with GNOM.

PDB code No. of amino acids Symmetry q (Å �1) Dmax (Å)

2fo0 465 1 0.005–0.500 80
4wkg 3837 3 0.010–0.300 180
1ssb 3668 7 0.010–0.500 145
5tar 332 1 0.003–0.500 100
253l 164 1 0.010–0.500 55
1y57 452 1 0.005–0.500 110

Figure 1
Representative volume-filling arrays (yellow dots) obtained from reconstructions carried out with calculated data superimposed on the polypeptide
chain traces (blue tubes) for the target proteins. Two orthogonal views are displayed for each example. PDB IDs: (a) 2fo0, (b) 4wkg, (c) 1ssb, (d) 5tar, (e)
253l, ( f ) 1y57.
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5 Å grids used to map the protein shapes (Table 2). Fig. 1

compares the most representative space-filling array obtained

from each of these examples with the chain-trace of the target

protein. In all cases there is strong visual correspondence

between the shape of the target protein model and the shape

derived from the simulated data. For all the reconstruction

trials with synthetic data the number of beads used to repre-

sent the protein volume was approximately equal to the

number of amino acids in the structure. Comparisons of the

most representative constellations of beads (typical nearest

neighbour separations �5.3 Å) with the C� positions (sepa-

rated by 3.8 Å) in the target models gave NSD values of

approximately unity, suggesting that the accuracy of the

reconstructed shapes may approach the dimensions of an

amino acid.

Further tests of the program were performed using

experimental data and files obtained from the SASBDB

(Table 3). In all of these examples the arrays used to demark

the reconstructed protein volumes were found to be relatively

similar in replicated reconstruction runs (mean NSD values

�0.7, Table 4) and, visually, the representative volumes were

consistent with the atomic models associated with these data

(Fig. 2). Values of the �2 statistic obtained from a comparison

of discrepancies between observed and calculated intensities

with experimental errors indicate that the final bead models

typically fit the data to the expected error [the standard

deviations associated with intensities for data for D76 may be

significantly underestimated since reconstructions with

GASBOR and DAMMIN/DAMMIF (cf. 5.2) also give very

low values]. Additional diagnostic information is provided in

the form of plots comparing P(r) with H(r) (Fig. 3) and

observed intensities with intensities calculated from the final

set of bead positions (Fig. 4). For most of these tests the

number of beads used to represent the protein volume was set
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Figure 2
Representative volume-filling arrays (yellow dots) obtained from reconstructions carried out with experimental data superimposed on polypeptide chain
traces (blue tubes) for the target proteins. Two orthogonal views are displayed for each example. SASBDB IDs: (a) CR9, (b) D42, (c) D76, (d) D89, (e)
DG9.

Table 2
Statistics for protein reconstructions obtained with SHAPES from
synthetic data.

Listed for each set of replicate runs are the number of beads used to represent
the protein volume, the minimum and maximum values for �P(r) =

P
|P(r) �

H(r)|/
P

P(r), the maximum and minimum Lennard–Jones energies per bead
(average energy), the NSD value for pairwise comparison between volume-
defining arrays (NSD-vols), the NSD value for pairwise comparison between
sets of beads (NSD-beads), and the discrepancy between the most
representative set of beads and the C� positions in the input model (NSD).

PDB
entry

No. of
beads �P(r) Average energy NSD-vols NSD-beads NSD

2fo0 465 0.019, 0.027 �1.40, �1.52 0.597 0.716 1.029
4wkg 3960 0.009, 0.013 �1.46, �1.52 0.603 0.714 1.240
1ss8 3780 0.014, 0.016 �1.41, �1.55 0.543 0.681 1.130
5tar 332 0.031, 0.035 �1.32, �1.46 0.567 0.710 1.059
253l 298 0.027, 0.036 �1.38, �1.51 0.504 0.692 0.944
1y57 452 0.022, 0.027 �1.39, �1.46 0.796 0.860 1.064

Table 3
Experimental data sets and parameters for protein reconstruction tests.

The total number of amino acids in the structure and the rotational symmetry
are given for each SASBDB entry from which data were obtained. The
number of amino acids was estimated from the protein molecular weight. The
data range (q) and the pair distance distribution function extending to Dmax

were obtained from the GNOM output files from the SASBDB.

SASBDB No. of amino acids Symmetry q (Å�1) Dmax (Å)

CR9 2418 1 0.009–0.215 195
D42 209 2 0.013–0.387 105
D76 297 1 0.012–0.273 93
D89 263 2 0.027–0.311 75
DG9 564 1 0.011–0.264 130

Table 4
Statistics for protein shape reconstructions obtained with SHAPES from
experimental data.

Listed for each set of replicate runs are the minimum and maximum values for
�P(r) =

P
|P(r) � H(r)|/

P
P(r), the maximum and minimum Lennard–Jones

energies per bead (average energy), the NSD value for pairwise comparison
between volume-defining arrays (NSD-vols), the NSD value for pairwise
comparison between sets of beads (NSD-beads), and the discrepancy between
the most representative set of beads and the C� positions in the input model
(NSD). The �2 values compare the intensity data and standard deviations with
intensities calculated for the most representative set of beads as point
scattering centres.

SASBDB �P(r) Average energy NSD-vols NSD-beads NSD �2

CR9 0.015, 0.024 �1.44, �1.50 0.839† 0.981† 1.317 1.4
D42 0.063, 0.073 �1.22, �1.33 0.653 0.804 1.227 1.3
D76 0.041, 0.051 �1.32, �1.40 0.598 0.750 1.166 0.2
D89 0.064, 0.075 �1.28, �1.44 0.556 0.776 1.214 2.4
DG9 0.038, 0.045 �1.39, �1.46 0.648 0.756 1.275 1.2

† Includes one extreme outlier reconstruction indicated by NSD-vols = 1.543, NSD-
beads = 1.411 versus the other nine runs; after excluding this reconstruction NSD-vols =
0.663 and NSD-beads = 0.906.
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to be approximately equal to the number of amino acids in the

structure. Comparisons of the positions of beads in the most

representative solution with the C� positions in the target

models gave NSD values of �1.25, slightly higher than for the

tests using synthetic data.

All the reconstruction trials shown here resulted in rela-

tively well defined outcomes and representative volumes that

were consistent with the expected shapes of the protein targets

(Figs. 1 and 2). Tests with synthetic and experimental data

included examples for which qmax ranges from 0.215 to 0.500

(Tables 1 and 3), indicating that successful applications of the

SHAPES program are not unduly predicated on the exact

choice of upper resolution limit and that these data may

extend somewhat beyond the regime where the scattering is

almost completely dominated by the contribution from the

overall molecular shape. Although data at the high-resolution

limit may contribute relatively little to the fitting (Fig. 4), this

component might still prove to be beneficial in terms of the

robustness and accuracy of the calculation of P(r) by indirect

Fourier transform (Svergun, 1992).

Only a small number of reconstruction trials (perhaps 3–4)

would seem to be required to detect and eliminate occasional

outlier solutions. It is expected that in the majority of appli-

cations the most representative volume-defining array output

by SHAPES may be used to depict the results of the solution

scattering analysis and the common practice of averaging

multiple disparate reconstruction runs to

obtain a consensus reconstruction will not be

necessary.

3.2. Comparison of SHAPES with GASBOR
and DAMMIN/DAMMIF

To compare the behaviour and perfor-

mance of SHAPES with those of the most

widely used software for ab initio protein

envelope reconstruction, parallel reconstruc-

tion trials using the experimental data from

the SASBDB (Table 3) were run using

GASBOR (Svergun et al., 2001) as well as

DAMMIN (Svergun, 1999) and its CPU-

efficient reimplementation DAMMIF (Franke

& Svergun, 2009). Since GASBOR was

parameterized by considering the volume-

defining beads to be dummy amino acids, the

number of beads was set equal to the

expected number of amino acids in the target

structure. The program version that utilizes

the real-space target P(r) was used, known

symmetries were applied and all other para-

meters were set to default values. DAMMIN/

DAMMIF represent the protein volume

using beads placed on a fixed hexagonal grid

with spacing determined by the program. The

intensity-based target was used, known

symmetries were applied and all other para-

meters were set to default values for ‘fast’

modes. Both GASBOR and DAMMIN were

accessed through the GUIs provided with the

ATSAS installation, and DAMMIF was

accessed via the command line. All calcula-

tions were run on the same Windows laptop

computer used for the calculations with

SHAPES (cf. Section 2.4).

Direct comparisons of the absolute repro-

ducibility and accuracy of the reconstructed

protein volumes between different programs

are greatly complicated by the fact that their

operating principles differ and the optimal

numbers of beads used to represent the

research papers

942 John Badger � Reconstruction of protein molecular envelopes J. Appl. Cryst. (2019). 52, 937–944

Figure 3
Comparisons of the pair distance distribution function, P(r), computed from experimental
intensity data (blue curve) with the set of pair distances, H(r), for the set of beads that gave
the most representative protein shape (red curve). The jitter in the model curve is caused by
sampling the distribution of pair distances with a relatively small number of beads and the
fact that this function is shown in ‘pure’ form for point distances, without the smoothing that
would result from convolution with a form factor representing a finite size for the bead
volume elements. SASBDB IDs: (a) CR9, (b) D42, (c) D76, (d) D89, (e) DG9.

Figure 4
Comparisons of experimentally determined intensities (blue curve) with intensities calculated
from the set of beads that gave the most representative protein shape (red curve). R values
between the observed and calculated intensities were all �0.02. SASBDB IDs: (a) CR9, (b)
D42, (c) D76, (d) D89, (e) DG9.
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protein volumes and the typical minimum distances between

neighbouring beads vary. Specifically, GASBOR assembles

beads into chains of beads separated by the characteristic C�–

C� distance of 3.8 Å, whereas for DAMMIN/DAMMIF the

number of beads and grid spacings vary considerably but

typically result in much coarser-grained models (14.0/14.0, 6.0/

7.5, 6.8/6.8, 4.2/5.2 and 9.4/9.4 Å for CR9, D42, D76, D89 and

DG9, respectively). With SHAPES, the typical minimum bead

separation is �5.3 Å when the number of beads is set equal to

the number of amino acids, the case that is most comparable to

usage of GASBOR.

As measured by the mean NSD for pairwise comparisons of

reconstruction replicates, the final distributions of beads

obtained with the SHAPES program (Table 4) are more

tightly clustered than those obtained with GASBOR (Table 5).

A high level of reproducibility is also achieved with the

reconstructions performed with DAMMIN/DAMMIF, albeit

often on a much coarser grid. As a practical matter, an opti-

mization method that provides more singular solutions is more

efficient and convenient (fewer runs are needed to provide ‘an

answer’), but it should be noted that although these results are

more precise they are not necessarily more accurate. A

methodology for determining the effective resolution of

solution scattering reconstructions based on the reproduci-

bility of the resulting reconstructions has been proposed

(Tuukkanen et al., 2016), but this approach requires a

program-specific calibration. Comparing bead positions for

the most representative reconstruction with the C� positions

in the target model, all programs gave NSD

values that were slightly greater than unity,

suggesting relatively modest differences from

the expected structures. However, this

measure is influenced by the typical nearest

neighbour separation between beads, and the

structures obtained with DAMMIN/

DAMMIF display less detail than recon-

structions obtained with SHAPES and

GASBOR.

Reconstructions with SHAPES for all the

examples shown here (Figs. 1 and 2) proved

to be successful and the number of aberrant

(outlier) reconstruction runs for the most

elongated structures did not usually exceed

�10%. Protein molecules that are more

highly elongated than these cases are more

challenging and it is more likely that recon-

struction runs will result in shapes that

contain improperly disconnected protein

volumes; the energetic term that causes beads

to clump together becomes less valid for

defining these types of structures. With

GASBOR, this problem is alleviated by an

additional bead modelling term that assem-

bles the beads into protein-like chains.

In the tests on the four relatively small

proteins (<600 amino acids) where SHAPES

was run with the number of beads compar-

able to the number of amino acids, the execution times for

SHAPES were 2–9 times shorter than for the comparable runs

with GASBOR (Table 6). With DAMMIN the number of

beads used to represent the protein volume varied consider-

ably and the performance of SHAPES ranged from marginally

faster to 16� faster. DAMMIF was the fastest program tested,

with all runs completing in <2 min, although for structures

characterized by fewer than 400 beads the runtimes for

SHAPES were also <5 min and the time difference is not

likely to be of much operational significance. In the absence of

symmetry, runtimes with SHAPES appear to be approxi-

mately quadratic relative to the number of beads, whereas

runtimes with GASBOR appear to grow less steeply. When

using SHAPES, modelling large proteins (over �1000 amino

acids) with a smaller number of amino acids may be expedient.

For example, the CR9 structure contains 2418 amino acids and

performing reconstruction runs using half the number of

beads resulted in a performance that is almost 3� quicker

than the parallel runs with GASBOR. If the same calculation

is performed with SHAPES using 2418 beads, the recon-

struction results are similar to the results obtained with the

coarser-grained model but GASBOR is then slightly faster.

Reconstructions of CR9 performed with DAMMIN used

1/3 of the time needed for SHAPES, and with DAMMIF

the runtimes are accelerated 12-fold further, but the resulting

volumes were modelled by an extremely small number of

beads (1/10 the number of amino acids) on a 14 Å grid

and the very coarse grained nature of these models may not
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Table 6
Comparison of output representations and runtimes for reconstruction calculations carried
out with SHAPES, GASBOR, DAMMIN and DAMMIF.

Listed are the numbers of volume-representing beads in reconstruction runs with SHAPES,
GASBOR, DAMMIN and DAMMIF. Wall clock times per reconstruction run are given in minutes
as the average of replicate runs on an otherwise quiet computer system.

SHAPES GASBOR DAMMIN DAMMIF

SASBDB No. of beads Time No. of beads Time No. of beads Time No. of beads Time

CR9 1209 76.7 2418 215.8 270 22.1 260 1.8
D42 298 2.8 210 11.0 319 29.1 180 1.2
D76 297 4.4 297 15.2 282 19.7 291 1.7
D89 292 2.3 264 21.0 960 36.5 632 1.3
DG9 564 16.5 564 29.4 207 19.4 227 1.9

Table 5
Statistics for protein shape reconstructions from experimental data obtained with GASBOR,
DAMMIN and DAMMIF.

Listed are the NSD values for pairwise comparisons between beads (NSD-beads) and discrepancies
between the most representative set of beads and the C� positions in the associated model (NSD).
The �2 values are given for the most representative reconstruction as reported by GASBOR,
DAMMIN and DAMMIF.

GASBOR DAMMIN DAMMIF

SASBDB NSD-beads NSD �2 NSD-beads NSD �2 NSD-beads NSD �2

CR9 1.417 1.489 1.1 0.537 1.124 1.0 0.582 1.133 1.0
D42 1.281 1.248 1.2 0.693 1.079 1.1 0.633 1.055 1.2
D76 1.173 1.211 0.3 0.589 1.104 0.2 0.588 1.084 0.2
D89 1.148 1.284 1.6 0.541 1.258 1.0 0.555 1.220 1.1
DG9 1.303 1.238 1.3 0.579 1.142 1.0 0.526 1.158 1.0
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fully capture all the information available in the scattering

data.

In the presence of a low rotational symmetry the relative

speedups for SHAPES are considerable but this is not the case

with GASBOR. For example, test runs with SHAPES for D42

and D89 with and without the application of twofold

symmetry showed that the incorporation of symmetry reduced

the SHAPES runtimes by a factor of �0.6, but increased the

GASBOR runtimes by a factor of �1.4. DAMMIN/DAMMIF

achieve similar speedups to SHAPES provided that the bead

radius is set so that it remains unchanged between compara-

tive test runs.

Although the relative completion times for these programs

may differ when calculations are performed on computers

running other operating systems, with faster processors or in

alternative user modes, the calculations presented here show

that reconstructions with SHAPES may be readily performed

on ordinary laptop computers when the number of beads is

smaller than �1000.

3.3. Program distribution

The SHAPES program and documentation are available for

download at http://saxs2shapes.com. The program is released

in the form of Python source code as an open source distri-

bution under a GNU GPLv3 licence. As such, the program is

freely available to both academic and commercial users and

may be customized or modified for local use as required.
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